(本小题满分14分) 如图,在棱长为a的正方体ABCD—A1B1C1D1中,E、F分别为棱AB和BC的中点,EF交BD于H。 (1)求二面角B1—EF—B的正切值; (2)试在棱B1B上找一点M,使D1M⊥平面EFB1,并证明你的结论; (3)求点D1到平面EFB1的距离。
(本小题满分12分)某厂家拟在2012年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元((为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2012年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(Ⅰ) 将2012年该产品的利润y万元表示为年促销费用万元的函数;(Ⅱ) 该厂家2012年的促销费用投入多少万元时,厂家的利润最大?
(本小题满分12分)为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形上规划出一块长方形地面建造公园,公园一边落在CD 上,但不得越过文物保护区的EF.问如何设才能使公园占地面积最大,并求这最大面积( 其中AB="200" m,BC="160" m,AE="60" m,AF="40" m.)
(本小题满分12分) 已知。若为真,为假,求实数的取值范围。
(本小题满分12分) .已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。
(12分)(2010·山东德州模拟)已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)若f(x)的极大值为4e-2,求出a的值.