(本小题满分13分) 设椭圆的离心率,右焦点到直线的距离为坐标原点.(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出.依此情况变化下去.为了投资少而获租金最多,每床每夜应提高租金多少元?
设全集,,,求集合.
一个圆柱形容器的底部直径是cm,高是cm.现在以cm/s的速度向容器内注入某种溶液.求容器内溶液的高度cm与注入溶液的时间s之间的函数解析式,并写出函数的定义域和值域.
已知函数,(1)求函数的定义域;(2)求的值;(3)当时,求,的值.
已知,,问是否存在实数、,使,若存在,求出,的值或,满足的关系式;若不存在,请说明理由.