已知关于的不等式的解集是。(1)求实数的值;(2)若正数满足:,求的最大值。
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB,M、N分别是PA、BC的中点.(I)求证:MN∥平面PCD;(II)在棱PC上是否存在点E,使得AE上平面PBD?若存在,求出AE与平面PBC所成角的正弦值,若不存在,请说明理由
(本小题满分12分)某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:(I)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?(II)从专业A中随机抽取2名学生,记其中女生的人数为X,求X的分布列和均值.注:
(本小题满分12分)某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.(I)求AB的长度;(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
.(本小题满分10分)已知等差数列{},为其前n项的和,=6,=18,n∈N*.(I)求数列{}的通项公式;(II)若=3,求数列{}的前n项的和.
(本题满分12分)如图,已知椭圆焦点为,双曲线,设是双曲线上异于顶点的任一点,直线与椭圆的交点分别为和。1. 设直线的斜率分别为和,求的值;2. 是否存在常数,使得恒成立?若存在,试求出的值;若不存在,请说明理由。3.