(本小题满分12分)已知椭圆C的中心在原点、焦点在轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线:与椭圆交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线过定点,并求出定点的坐标.
为了更好地服务于2010年世博会,上海某酒店随机地对最近入住的名旅客进行服务质量问卷调查,把旅客对住宿的舒适满意度与价格满意度分为五个等级: “1级(很不满意)”、“2级(不满意)”、“3级(一般)”、“4级(满意)”、“5级(很满意)”其结果如表所示,若在这个样本中,任选一人,其舒适度为,价格满意度. (1)根据样本中的数据求P(y=5)及P(x≥3且y=3)的值; (2)若的期望值为,求a、b、c的值; (3)求该人在对价格满意(满意度不低于3)的条件下对舒适度也满意的概率.
在△ABC中,内角A、B、C的对边分别是,,, (1)求内角A; (2)求函数的最小正周期,并写出它的单调增区间。
(本小题满分14分) 设函数Z),曲线在点处的切线方程为。 (1)求的解析式; (2)证明:函数的图象是一个中心对称图形,并求其对称中心; (3)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值。
(本小题满分14分) 如图所示,已知曲线交于点O、A,直线与曲线、分别交于点D、B,连结OD,DA,AB. (1)求证:曲边四边形ABOD(阴影部分:OB为抛物线弧)的面积的函数表达式为 (2)求函数在区间上的最大值.
(本小题满分13分) 甲、乙两人各射击一次,击中目标的概率分别是和,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。 (1)求甲射击4次,至少有1次未击中目标的概率; (2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (3)假设某人连续2次未击中目标,则中止其射击。则乙恰好射击5次后被中止射击的概率是多少?