(本小题满分12分)如图,在直角坐标系中,已知椭圆:的离心率,左、右两个焦点分别为、。过右焦点且与轴垂直的直线与椭圆相交、两点,且. (1)求椭圆的方程;(2)设椭圆的左顶点为,下顶点为,动点满足,试求点的轨迹方程,使点关于该轨迹的对称点落在椭圆上.
已知函数的图象过点. (1)求的值; (2)若,,求的值.
已知函数. (1)当时,求函数的极值; (2)若函数在区间上是减函数,求实数a的取值范围; (3)当时,函数图象上的点都在所表示的平面区域内,求实数a的取值范围.
在锐角中,、、分别为角所对的边,且. (Ⅰ)确定角的大小; (Ⅱ)若=, 且的面积为, 求的值.
某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者从装有个红球、个蓝球、6个白球的袋中任意摸出4个球.根据摸出个球中红球与蓝球的个数,设一、二、三等奖如下:
其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额的分布列与期望.
等比数列的前n项和,已知对任意的,点均在函数的图像上. (1)求r的值. (2)当b=2时,记,求数列的前n项和.