(本题12分)如图,斜三棱柱的底面是直角三角形,,点在底面上的射影恰好是的中点,且.(Ⅰ)求证:平面平面;(Ⅱ)求证:;(Ⅲ)求二面角的大小.
选修4—4:坐标系与参数方程已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程; (2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.
选修4-1:几何证明选讲如图,是的一条切线,切点为,直线,,都是的割线,已知.(1)求证:;(2)若,.求的值.
已知函数.(1)若曲线在处的切线为,求的值;(2)设,,证明:当时,的图象始终在的图象的下方;(3)当时,设,(为自然对数的底数),表示导函数,求证:对于曲线上的不同两点,,,存在唯一的,使直线的斜率等于.
如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
如图,在三棱锥中,底面,,,分别是的中点,在上,且.(1)求证:平面;(2)在线段上上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.