(本题12分) 某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.(Ⅰ)求某选手第二次抽到的不是科技类题目的概率;(Ⅱ)求某选手抽到体育类题目数的分布列和数学期望E.
已知:四棱锥P-ABCD,,底面ABCD是直角梯形,,且AB∥CD,, 点F为线段PC的中点, (1)求证: BF∥平面PAD;(2) 求证:。
如图,已知M,N分别是棱长为1的正方体的棱和的中点,求:(1)MN与所成的角;(2)MN与间的距离。
如图所示:四棱锥P-ABCD底面一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.(1)证明:EB∥平面PAD;(2)若PA=AD,证明:BE⊥平面PDC;(3)当PA=AD=DC时,求二面角E-BD-C的正切值.
已知正四棱柱中,点E为的中点,F为的中点。⑴求与DF所成角的大小;⑵求证:面;⑶求点到面BDE的距离。
如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2, ∠ACB=90°,D、E分别为AC、AA1的中点.点F为棱AB上的点.(Ⅰ)当点F为AB的中点时.(1)求证:EF⊥AC1;(2)求点B1到平面DEF的距离.(Ⅱ)若二面角A-DF-E的大小为的值.