有甲、乙两个盒子,甲盒子中装有3个小球,乙盒子中装有5个小球,每次随机选取一个盒子并从中取出一个球。(I)求当甲盒子中的球被取完时,乙盒子中恰剩下2个球的概率;(Ⅱ)当第一次取完一个盒子中的球时,另一个盒子恰剩下个球,求的分布列及期望.
设均为正数,且证明:(1);(2).
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).(1)写出直线的普通方程与曲线的直角坐标方程;(2)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标。
已知函数(1)当时,试讨论函数的单调性;(2)证明:对任意的 ,有.
已知函数.(1)当时,求的单调区间;(2)若函数在单调递减,求实数的取值范围.
已知分别为三个内角的对边,(1)求; (2)若,求的面积.