(本小题满分14分)已知数列的相邻两项是关于的方程的两实根,且(1)求证:数列是等比数列;(2)设是数列的前项和,求;(3)问是否存在常数,使得对都成立,若存在,求出的取值范围,若不存在,请说明理由。
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2. (1)求y=f(x)的表达式; (2)求y=f(x)的图象与两坐标轴所围成图形的面积. (3)若直线x=-t(0<t<1=把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.
求曲线,及所围成的平面图形的面积.
汽车每小时54公里的速度行驶,到某处需要减速停车,设汽车以等减速度3米/秒刹车,问从开始刹车到停车,汽车走了多少公里?
求在上,由轴及正弦曲线围成的图形的面积.