(13分) 某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为,乌克兰队赢的概率为,且每局比赛输赢互不影响.若中国队第n局的得分记为,令.(1)求的概率;(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.设随机变量表示此次比赛共进行的局数,求的分布列及数学期望.
求过点P(3, 0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程。
已知函数,函数,称方程 的根为函数f(x)的不动点, (1)若f(x)在区间[0,3]上有两个不动点,求实数的取值范围; (2)记区间D="[1," ](>1),函数f(x)在D上的值域为集合A,函数g(x)在D上的值域为集合B,已知,求的取值范围。
已知函数, (1)若f(x)在区间[m,m+1]上单调递减,求实数m的取值范围; (2)若f(x)在区间[a,b](a<b)上的最小值为a,最大值为b,求a、b的值。
已知函数, (1)判断并证明f(x)在上的单调性; (2)讨论函数在上的零点的个数。
已知为定义在R上的偶函数,为实常数, (1)求的值; (2)若已知为定义在R上的奇函数,判断并证明函数的奇偶性。