(13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(1)求椭圆C的方程;(2)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
已知函数f(x)=x3+Ax2﹣9x+1,下列结论中错误的是( )
(本小题满分14分)已知函数f(x)=xln(1+x)-a(x+1),其中a为实常数.(1)当x∈[1,+∞)时,f′(x)>0恒成立,求a的取值范围;(2)求函数g(x)=f′(x)-的单调区间.
(本小题满分12分)四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,(1)求证:PD⊥平面ABCD;(2)求证,直线PB与AC垂直;
(本小题满分12分)已知数列{}是公差不为0的等差数列,a1=2且a2, a3, a4+1成等比数列.(1)求数列{}的通项公式;(2)设,求数列{}的前n项和
(本小题满分12分)若函数f(x)=ax2+2x-ln x在x=1处取得极值.(1)求a的值;(2)求函数f(x)的单调区间及极值.