(13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(1)求椭圆C的方程;(2)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
已知函数f(x)=x-ax+(a-1),。 (1)讨论函数的单调性;(2)若,设, (ⅰ)求证g(x)为单调递增函数; (ⅱ)求证对任意x,x,xx,有.
近年来,网上购物已经成为人们消费的一种趋势。假设某淘宝店的一种装饰品每月的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式其中2<x<6,m为常数,已知销售价格为4元/件时,每月可售出21千件。(1)求m的值;(2)假设该淘宝店员工工资、办公等每月所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x的值,使该店每月销售饰品所获得的利润最大.(结果保留一位小数)
已知向量,,(,且为常数),设函数,若的最大值为1. (1)求的值,并求的单调递增区间; (2)在中,角、、的对边、、,若,且,试判断三角形的形状.
已知数列及其前项和满足:(,). (1)证明:设,是等差数列; (2)求及; (3)判断数列是否存在最大或最小项,若有则求出来,若没有请说明理由.
已知:、、是同一平面内的三个向量,其中=(1,2) ⑴若||,且,求的坐标; ⑵若||=且垂直,求与的夹角θ。