(12分)某电视台综艺频道主办一种有奖过关游戏,该游戏设有两关,只有过了第一关,才能玩第二关,每关最多玩两次,连续两次失败者被淘汰出局.过关者可获奖金,只过第一关获奖金900元,两关全过获奖金3600元.某同学有幸参与了上述游戏,且该同学每一次过关的概率均为,各次过关与否互不影响.在游戏过程中,该同学不放弃所有机会.(1)求该同学仅获得900元奖金的概率;(2)若该同学已顺利通过第一关,求他获得3600元奖金的概率;(3)求该同学获得奖金的数学期望(精确到元).
设是椭圆的两点,,,且,椭圆离心率,短轴长为2,O为坐标原点.(1)求椭圆方程;(2)若存在斜率为的直线AB过椭圆的焦点(为半焦距),求的值;(3)试问的面积是否为定值?若是,求出该定值;若不是,说明理由.
设数列为等差数列,且,,数列的前项和为,且(1)求数列,的通项公式; (2)若,求数列的前项和.
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.(1)求证:DC平面ABC; (2)设,求三棱锥A-BFE的体积.
为了了解调研高一年级新学生的智力水平,某校按l 0%的比例对700名高一学生按性别分别进行“智力评分”抽样检查,测得“智力评分”的频数分布表如下表l,表2.表1:男生“智力评分”频数分布表
表2:女生“智力评分”频数分布表
(1)求高一的男生人数并完成下面男生的频率分布直方图;(2)估计该校学生“智力评分”在[1 65,1 80)之间的概率;(3)从样本中“智力评分”在[180,190)的男生中任选2人,求至少有1人“智力评分”在[185,190)之间的概率.
(本小题满分12分)在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.