设是椭圆的两点,,,且,椭圆离心率,短轴长为2,O为坐标原点.(1)求椭圆方程;(2)若存在斜率为的直线AB过椭圆的焦点(为半焦距),求的值;(3)试问的面积是否为定值?若是,求出该定值;若不是,说明理由.
((本小题满分10分)选修4—5:不等式选讲 设函数 (I)解不等式; (II)求函数的最小值.
((本小题满分10分)选修4—1:几何证明选讲 如图,已知AD是的外角的平分线,交BC的延长线于点D,延长DA交的外接圆于点F,连结FB、FC (I)求证:FB=FC; (II)求证:FB2=FA·FD; (III)若AB是外接圆的直径,求AD的长。
((本小题满分12分) 设函数 (I)若,直线l与函数和函数的图象相切于一点,求切线l的方程。 (II)若在[2,4]内为单调函数,求实数a的取值范围;
((本小题满分12分) 椭圆的两个焦点F1、F2,点P在椭圆C上,且PF1⊥F1F2,且|PF1|= (I)求椭圆C的方程。 (II)以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由。
((本小题满分12分) 在边长为5的菱形ABCD中,AC=8。现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为 (I)求证:平面ABD⊥平面CBD; (II)若M是AB的中点,求折起后AC与平面MCD所成角的一个三角函数值.