设是椭圆的两点,,,且,椭圆离心率,短轴长为2,O为坐标原点.(1)求椭圆方程;(2)若存在斜率为的直线AB过椭圆的焦点(为半焦距),求的值;(3)试问的面积是否为定值?若是,求出该定值;若不是,说明理由.
已知椭圆的离心率.直线x=t(t>0)与曲线E交于不同的两点,,以线段为直径作圆,圆心为.(1)求椭圆的方程;(2)若圆与y轴相交于不同的两点A,B,求△ABC的面积的最大值.
设,分别是椭圆E:的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线的斜率为1,求b的值.
(本小题12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成六组后,得到频率分布直方图(如图),观察图形中的信息,回答下列问题.(1)从频率分布直方图中,估计本次考试成绩的中位数;(2)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
(本小题12分)在△ABC中,A,B,C所对的边分别为a,b,c,向量,向量.若.(1)求角A的大小;(2)若△ABC外接圆的半径为2,b=2,求边c的长.
(本小题12分)已知,命题:,恒成立,命题:,直线与椭圆有公共点,求使得为真命题,为假命题的实数的取值范围.