(本小题满分13分)如图,由不大于n(n∈)的正有理数排成的数表,质点按……顺序跳动,所经过的有理数依次排列构成数列。(Ⅰ)质点从出发,通过抛掷骰子来决定质点的跳动步数,骰子的点数为奇数时,质点往前跳一步(从到达);骰子的点数为偶数时,质点往前跳二步(从到达).①抛掷骰子二次,质点到达的有理数记为ξ,求Eξ;②求质点恰好到达的概率。(Ⅱ)试给出的值(不必写出求解过程)。
在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足2sin(A+B)-=0,求角C的度数,边c的长度.
在中, ⑴ 已知: acosB="bcosA" ,试判断形状;⑵求证:。
已知椭圆,试确定的值,使得在此椭圆上存在不同两点关于直线对称。
已知数列中,,前项和为(I)证明数列是等差数列,并求出数列的通项公式;(II)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值。
数列满足:(1)求数列的通项公式;(2)设数列的前n项和分别为An、Bn,问是否存在实数,使得 为等差数列?若存在,求出的值;若不存在,说明理由。