现就某地居民的月收入调查了人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在).(Ⅰ)求居民月收入在的频率;(Ⅱ)根据频率分布直方图算出样本数据的中位数;(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽出多少人?
设{an}是公比为正数的等比数列,a1=2,a3=a2+4. (1)求{an}的通项公式. (2)设{bn}是首项为1,公差为2的等差数列,求{an+bn}的前n项和Sn.
已知向量a=(,cosωx),b=(sinωx,1),函数f(x)=a·b,且最小正周期为4π. (1)求ω的值. (2)设α,β∈,f=,f=-,求sin(α+β)的值. (3)若x∈[-π,π],求函数f(x)的值域.
已知平面向量a=(,-1),b=. (1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k关于t的关系式k=f(t). (2)求函数k=f(t)在t∈(-2,2)上的最小值.
设a=(cosα,sinα),b=(cosβ,sinβ),若a-b=,θ为a与b的夹角. (1)求θ的值. (2)若f(x)=2sin(θ-x)cos(θ-x)+2sin2(θ-x),求f(x)的单调递增区间.
已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i. (1)求点C,D对应的复数. (2)求平行四边形ABCD的面积.