现就某地居民的月收入调查了人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在).(Ⅰ)求居民月收入在的频率;(Ⅱ)根据频率分布直方图算出样本数据的中位数;(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽出多少人?
已知函数f(x)=x3+ax2+bx. (1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间; (2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求的取值范围.
已知圆C:x2+y2+2x-4y+3=0. (1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程; (2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
已知数列{an}是等差数列,{bn}是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3. (1)求数列{an}和{bn}的通项公式; (2)数列{cn}满足cn=anbn,求数列{cn}的前n项和Sn.
如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点. (1)证明:PE⊥BC; (2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
设函数f(x)=sin xcos x-cos(π+x)cos x(x∈R). (1)求f(x)的最小正周期; (2)若函数y=f(x)的图象按b=平移后得到函数y=g(x)的图象,求y=g(x)在[0,]上的最大值.