(本小题满分10分)已知数列中,,(Ⅰ)求;(Ⅱ)猜想的表达式,并用数学归纳法加以证明.
(本小题满分10分) 已知p: 是的反函数, 且;q : 集合且.求实数的取值范围, 使p, q中有且只有一个真命题.
(本小题满分12分) 设为等比数列,且其满足:. (1)求的值及数列的通项公式; (2)已知数列满足,求数列的前n项和.
(本小题满分12分) 已知数列,且是函数,()的一个极值点.数列中(且). (1)求数列的通项公式; (2)记,当时,数列的前项和为,求使的的最小值; (3)若,证明:()。
(本小题满分12分) 已知函数 (1)若上是增函数,求的取值范围; (2)若; (3)若
(本小题满分12分) 已知数列 (I)求的通项公式; (II)由能否为等差数列?若能,求的值;若不能,说明理由。