选修4-4:坐标系与参数方程:已知曲线(为参数).(1)将的方程化为普通方程;(2)若点是曲线上的动点,求的取值范围.
已知函数(,m是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是, (1)求函数的解析式及其单调增区间; (2)在锐角三角形△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.
已知函数的图像过坐标原点,且在点处的切线斜率为. (1) 求实数的值; (2) 求函数在区间上的最小值; (3) 若函数的图像上存在两点,使得对于任意给定的正实数都满足是以为直角顶点的直角三角形,且三角形斜边中点在轴上,求点的横坐标的取值范围.
椭圆的两焦点坐标分别为和,且椭圆经过点. (1)求椭圆的方程; (2)过点作直线交椭圆于两点(直线不与轴重合),为椭圆的左顶点,试证明:.
如图,已知平面四边形中,为的中点,,, 且.将此平面四边形沿折成直二面角, 连接,设中点为. (1)证明:平面平面; (2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由. (3)求直线与平面所成角的正弦值.
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
(1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.