(本小题满分12分)如图,四棱锥中,是的中点,,,面,且.(Ⅰ)证明:;(Ⅱ)证明:面.
已知椭圆 ()的一个焦点坐标为,且长轴长是短轴长的倍.(1)求椭圆的方程;(2)设为坐标原点,椭圆与直线相交于两个不同的点,线段的中点为,若直线的斜率为,求△的面积.
已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.(1)求椭圆的方程;(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.
为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表。请你根据频率分布表解答下列问题:(1)填充频率分布表中的空格。(2)为鼓励学生更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.
下表提供了某厂节能降耗技术发行后,生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
(1)求线性回归方程所表示的直线必经过的点;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;并预测生产1000吨甲产品的生产能耗多少吨标准煤?(参考:)
(本小题满分14分)已知数列中,,,2,3,…(I)求证数列是等差数列;(II)试比较的大小;(III)求正整数,使得对于任意的正整数恒成立。