某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为.(Ⅰ)求比赛三局甲获胜的概率;(Ⅱ)求甲获胜的概率;(Ⅲ)设甲比赛的次数为,求的数学期望.
(本小题满分12分)已知,数列满足,,数列满足,.(1)求证:数列为等比数列;(2)令,求证:;(3)求证:.
(本小题满分12分)已知在平面直角坐标系中,向量,且 .(I)设的取值范围;(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.
(本小题满分12分)己知.(Ⅰ)若,函数在其定义域内不是单调函数,求的取值范围;(Ⅱ)当时,判断函数只有的零点个数.
(本小题满分12分)一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.试求出该考生:(1)得60分的概率;(2)得多少分的可能性最大?(3)所得分数的数学期望(用小数表示,精确到0.01).
(本小题满分12分)如图所示,在正三棱柱中,底面边长为,侧棱长为,是棱的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.