设是等差数列,是各项都为正数的等比数列,且,,(1)求数列和的通项公式(2)求数列的前n项和
如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC.
(Ⅰ)已知函数()的最小正周期为.求函数的单调增区间;(Ⅱ)在中,角对边分别是,且满足.若,的面积为.求角的大小和边b的长.
一个几何体的三视图如下图所示(单位:),(1)该几何体是由那些简单几何体组成的;(2)求该几何体的表面积和体积.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].(1)求m的值;(2)若a,b,c∈R+,且++=m,求证:a+2b+3c≥9.
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;(Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.