如图,四棱锥 S-ABCD的底面是正方形,每条侧棱的长都是地面边长的 倍, P为侧棱SD上的点。 (Ⅰ)求证: AC⊥ SD; (Ⅱ)若 SD⊥ 平面 PAC,求二面角 P-AC-D的大小 (Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平 面PAC。若存在,求SE:EC的值 ;若不存在,试说明理由。
(本小题满分10分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.
某厂根据市场需求开发折叠式小凳(如图所示). 凳面为三角形的尼龙布,凳脚为三根细钢管. 考虑到钢管的受力和人的舒适度等因素,设计小凳应满足:① 凳子高度为,② 三根细钢管相交处的节点与凳面三角形重心的连线垂直于凳面和地面. (1)若凳面是边长为的正三角形,三只凳脚与地面所成的角均为,确定节点分细钢管上下两段的比值;(2)若凳面是顶角为的等腰三角形,腰长为,节点分细钢管上下两段之比为. 确定三根细钢管的长度.
(本小题满分12分) 甲、乙两人在一场五局三胜制的象棋比赛中,规定甲或乙无论谁先赢满三局就获胜,并且比赛就此结束.现已知甲、乙两人每比赛一局甲取胜的概率是,乙取胜的概率为,且每局比赛的胜负是独立的,试求下列问题:(Ⅰ)比赛以甲3胜1而结束的概率;(Ⅱ)比赛以乙3胜2而结束的概率;(Ⅲ)设甲获胜的概率为a,乙获胜的概率为b,求a:b的值.
(本小题满分12分)如图,已知正方形ABCD和矩形ACEF所在平面互相垂直, AB=,AF=1,M是线段EF的中点。 (Ⅰ)求证:AM∥平面BDE; (Ⅱ) 求二面角A-DF-B的大小. (Ⅲ)试问:在线段AC上是否存在一点P,使得直线PF与AD所成角为60°?
(本小题满分12分)学习小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.(1)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;(2)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,该小组没有参加过数学研究性学习活动的同学个数是一个随机变量,求随机变量的分布列及数学期望.