(本小题满分12分) 甲、乙两人在一场五局三胜制的象棋比赛中,规定甲或乙无论谁先赢满三局就获胜,并且比赛就此结束.现已知甲、乙两人每比赛一局甲取胜的概率是,乙取胜的概率为,且每局比赛的胜负是独立的,试求下列问题:(Ⅰ)比赛以甲3胜1而结束的概率;(Ⅱ)比赛以乙3胜2而结束的概率;(Ⅲ)设甲获胜的概率为a,乙获胜的概率为b,求a:b的值.
已知函数.(Ⅰ)当时,恒成立,求实数的取值范围;(Ⅱ)若对一切,恒成立,求实数的取值范围.
如图所示,是一个矩形花坛,其中AB= 4米,AD = 3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点, 且矩形的面积小于64平方米.(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.
在ABC中,内角A,B,C的对边分别为a,b,c.已知,.(Ⅰ)求的值; (Ⅱ)若,求ABC的面积.
设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面内.(Ⅰ)求的大小;(Ⅱ)求点到直线的距