某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧作,两次烧制过程相互独立,根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望。
在中,,,分别是角,,的对边,向量,,且//. (Ⅰ)求角的大小; (Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.
已知函数. (Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列; (Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和.
定义在上的单调函数满足,且对任意都有 (1)求证:为奇函数; (2)若对任意恒成立,求实数的取值范围.
某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数是常数的图象. (1)写出服药后每毫升血液中含药量关于时间的函数关系式; (2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上,为保持疗效,第二次服药最迟是当天几点钟? (3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少?
已知函数,且. (1)求的值,并确定函数的定义域; (2)用定义研究函数在范围内的单调性; (3)当时,求出函数的取值范围.