某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧作,两次烧制过程相互独立,根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望。
(本小题满分14分)某地拟建一座长为米的大桥,假设桥墩等距离分布,经设计部门测算,两端桥墩、造价总共为万元,当相邻两个桥墩的距离为米时(其中),中间每个桥墩的平均造价为万元,桥面每1米长的平均造价为万元.(1)试将桥的总造价表示为的函数;(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩、除外)应建多少个桥墩?
(本小题满分14分)在直三棱柱中,,,点分别是棱的中点.(1)求证://平面;(2)求证:平面平面.
(本小题满分14分)已知,,记函数.(1)求函数取最大值时的取值集合;(2)设的角所对的边分别为,若,,求面积的最大值.
(本小题满分14分)已知函数,其中为实数.(Ⅰ)当时,求函数的单调区间;(Ⅱ) 当时,若函数对定义域内的任意恒成立,求实数的取值范围.(Ⅲ)证明,对于任意的正整数,不等式恒成立.
(本小题满分12分)如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,.(Ⅰ)求椭圆的标准方程;(Ⅱ)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.