(本小题共14分)已知函数.(I)判断函数的单调性;(Ⅱ)若+的图像总在直线的上方,求实数的取值范围;(Ⅲ)若函数与的图像有公共点,且在公共点处的切线相同,求实数的值.
(本题满分14分)已知函数的图像过点(1,3),且对任意实数都成立,函数与的图像关于原点对称.(Ⅰ)求与的解析式;(Ⅱ)若在[-1,1]上是增函数,求实数λ的取值范围.
(本小题满分14分) 已知点是⊙:上的任意一点,过作垂直轴于,动点满足.(1)求动点的轨迹方程;(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
(右图为一简单集合体,其底面ABCD为正方形,平面,,且="2" .(1)画出该几何体的三视图;(2)求四棱锥B-CEPD的体积;(3)求证:平面.
((本小题满分12分)某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
(本小题满分12分)已知电流与时间的关系式为.(1)如图是(ω>0,)在一个周期内的图象,根据图中数据求的解析式;(2)如果在任意一段秒的时间内,电流都能取得最大值和最小值,那么ω的最小正整数值是多少?