(本小题满分12分)已知数列中,(为常数),为的前项和,且是与的等差中项.(Ⅰ)求;(Ⅱ)求数列的通项公式;(Ⅲ)若且,为数列的前项和,求的值.
已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围。
设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(1)求方程有实根的概率;(2)求的分布列和数学期望;(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
已知为偶函数,曲线过点(2,5), .(1)若曲线有斜率为0的切线,求实数的取值范围;(2)若当时函数取得极值,确定的单调区间.
一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下: (1)估计该校男生的人数;(2)估计该校学生身高在170~185㎝之间的概率;(3)从样本中身高在165~180㎝之间的女生中任选2人,求至少有1人身高在170~180㎝之间的概率;