(本小题满分12分)从集合的所有非空真子集中等可能地取出一个.(1)求所取的子集中元素从小到大排列成等比数列的概率;(2)记所取出的子集的元素个数为,求的分布列和数学期望.
已知向量a=(cosωx,sinωx),b=(cosωx,cosωx),其中0<ω<2,函数,其图象的一条对称轴为。(1)求函数的表达式及单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,S△ABC为其面积,若,b=1,,求a的值。
在△ABC中,角A、B、C所对的边分别为a、b、c,向量 ,.已知 .(1)若,求角A的大小;(2)若,求的取值范围。
如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中点。(1)求证:AC⊥平面BDE;(2)若直线PA与平面PBC所成角为30°,求二面角P-AD-C的正切值;(3)求证:直线PA与平面PBD所成的角φ为定值,并求sinφ值。
如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.(1)求证:PA//平面BDM;(2)求直线AC与平面ADM所成角的正弦值.
设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.(1) 若当n=10时,Sn取到最小值,求的取值范围;(2) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.