(本小题共14分)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为.(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率;(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(Ⅱ)设直线与轴、轴分别交于点,,求证:为定值.
(本小题满分12分) 已知等差数列的公差,设, (Ⅰ)若,求数列的通项公式; (Ⅱ)若,且成等比数列,求的值; (Ⅲ)若,证明:.
(本小题满分12分) 已知向量,.函数. (I)若,求的值; (II)在中,角的对边分别是,且满足, 求的取值范围.
(本小题满分12分) 已知关于x的二次函数. (I)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数在区间上是增函数的概率; (II)设点(a,b)是区域内的一点,求函数在区间上是增函数的概率.
本小题满分12分) 已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB, N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.
(本小题满分12分) 已知函数,且对于任意实数,恒有. (1)求函数的解析式; (2)函数有几个零点?