(本小题满分12分)已知,函数的最小正周期为,且当时,的最小值为0.(1)求和的值;(2)在中,角、、的对边分别是、、,满足,求的取值范围.
已知点和圆:. (Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程; (Ⅱ)若的面积,且是圆内部第一、二象限的整点(平面内横、纵坐标均为整数 的点称为整点),求出点的坐标.
如图,已知四棱锥中,底面是直角梯形,,,,,平面,. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)若是的中点,求三棱锥的体积.
光线从点射出,到轴上的点后,被轴反射,这时反射光线恰好过点,求所在直线的方程及点的坐标.
正方体的棱长为,线段上有两个动点,且,则下列结论中错误的是( )
如图,圆:. (Ⅰ)若圆与轴相切,求圆的方程; (Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.