(本小题满分14分)已知椭圆(Ⅰ)求椭圆的离心率;(Ⅱ)设椭圆上在第二象限的点的横坐标为,过点的直线与椭圆的另一交点分别为.且的斜率互为相反数,两点关于坐标原点 的对称点分别为 ,求四边形 的面积的最大值.
已知集合,函数的定义域为. (1)求集合. (2)求.
已知函数. (1)当时,求函数的单调区间; (2)若函数在处取得极值,对,恒成立,求实数的取值范围; (3)当时,求证:.
已知函数,其中是自然对数的底数,. (1)若,求曲线在点处的切线方程; (2)若,求的单调区间; (3)若,函数的图像与函数的图像有3个不同的交点,求实数的取值范围.
已知函数,( 为常数,为自然对数的底). (1)当时,求; (2)若在时取得极小值,试确定的取值范围; (3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线(为确定的常数)相切,并说明理由.
设函数. (1)若在时有极值,求实数的值和的极大值; (2)若在定义域上是增函数,求实数的取值范围.