已知函数,( 为常数,为自然对数的底).(1)当时,求;(2)若在时取得极小值,试确定的取值范围;(3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线(为确定的常数)相切,并说明理由.
(本小题满分12分)已知的图像在点处的切线与直线平行. (1)求a,b满足的关系式; (2)若上恒成立,求a的取值范围;
(本小题满分12分)如图,在△ABC中,|AB|=|AC|=,|BC|=2,以B、C为焦点的椭圆恰好过AC的中点P. (Ⅰ)求椭圆的标准方程; (Ⅱ) 过椭圆的右顶点作直线l与圆E:(x-1)2+y2=2相交于M、N两点,试探究点M、N能将圆E分割成弧长比值为1∶3的两段弧吗?若能,求出直线l的方程;若不能,请说明理由.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC. (Ⅰ)求证:AG⊥平面PCD; (Ⅱ)求证:AG∥平面PEC; (Ⅲ)求点G到平面PEC的距离.
(本小题满分12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下: (Ⅰ) 现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由; (Ⅱ) 若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.
(本小题满分12分) 已知等差数列中,为数列的前项和. (1)求数列的通项公式; (2) 若数列的公差为正数,数列满足, 求数列的前项和