设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.
(本小题满分12分)抛物线的焦点与双曲线的右焦点重合.(Ⅰ)求抛物线的方程;(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.
本小题满分12分)给定两个命题, :对任意实数都有恒成立;:.如果∨为真命题,∧为假命题,求实数的取值范围.
(本小题满分12分)已知分别为三个内角的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,,求的面积.
已知,. 记(其中都为常数,且). (Ⅰ)若,,求的最大值及此时的值;(Ⅱ)若,①证明:的最大值是;②证明:.
已知是定义在上的奇函数,且当时,.(Ⅰ)求的解析式;(Ⅱ)直接写出的单调区间(不需给出演算步骤);(Ⅲ)求不等式解集.