(本小题满分14分) 设数列,满足:a1=4,a2= ,, . (1)用 表示 ;并证明:, an>2 ; (2)证明:是等比数列; (3)设Sn是数列的前n项和,当n≥2时,Sn与 是否有确定的大小关系?若有,加以证明;若没有,请说明理由.
(本小题满分12分)已知函数. (Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列; (Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和.
(本小题满分12分)已知函数 的图象的一部分如下图所示. (Ⅰ)求函数的解析式;(Ⅱ)当时,求函数的最大值与最小值及相应的的值.
.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤. 求证:对于任意的正整数,必可表示成的形式,其中.
.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤. 由数字1,2,3,4组成五位数,从中任取一个. (1)求取出的数满足条件:“对任意的正整数,至少存在另一个正整数,且,使得”的概率; (2)记为组成该数的相同数字的个数的最大值,求的概率分布列和数学期望.
.选修4—4:极坐标与参数方程 将参数方程为参数化为普通方程.