(本小题满分12分)甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX.
(本小题满分12分) 已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E、F分别为BC、PD的中点。 (1)求证:PB//平面AFC; (2)求平面PAE与平面PCD所成锐二面角的余弦值。
(本小题满分12分) 已知等差数列是递增数列,且满足 (1)求数列的通项公式; (2)令,求数列的前项和
(本小题满分12分) 已知集合 (1)若; (2)若的充分条件,求实数的取值范围。
(本小题满分10分) 一位游客欲参观上海世博会中甲、乙、丙这3个展览馆,又该游客参观甲、乙、丙这3个展览馆的概率分别是0.4,0.5,0.6,且是否参观哪个展览馆互不影响,设表示该游客离开上海世博会时参观的展览馆数与没有参观的展览馆数之差的绝对值. (Ⅰ)求的概率分布及数学期望; (Ⅱ)记“函数在区间上单调递增”为事件,求事件的概率.
(本小题满分10分) 已知四棱锥P—ABCD的底面为直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点。 (I)求AC与PB所成角的余弦值; (II)求面AMC与面BMC所成二面角的余弦值的大小。