(本小题12分)定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)= x0,则称x0是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0). (1)当a=1,b=-2时,求函数f(x)的不动点; (2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+对称,求b的最小值.
(已知二次函数满足:对任意实数x,都有,且当(1,3)时,有成立。 (1)证明:; (2)若的表达式; (3)在(2)的条件下,设,,若图上的点都位于直线的上方,求实数m的取值范围。
(某公司租地建仓库,每月土地占用费y1与车库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站多少公里处?
(已知抛物线y=x2+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.
某企业生产A、B两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表: 已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A、B两种产品各多少吨,才能获得最大利润?
若f(x)是定义在(0,+∞)上的增函数,且对一切x>0满足 (1)求的值; (2)若,解不等式