(本小题满分12分) 在一次体操选拔赛中,教练组设置了难度不同的甲、乙两个系列,每个系列都有A和B两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩. 假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表: 表1:甲系列 表2:乙系列
动作
(本小题满分10分)选修4~4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位。且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求的最小值.
(本小题满分10分)选修4-1:几何证明选讲 如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB. (1)若CG=1,CD=4,求的值. (2)求证:FG//AC;
(本小题12分)已知函数,.(1)若,曲线在点处的切线与轴垂直,求的值;(2)在(1)的条件下,求证:
(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,,设为椭圆与轴负半轴的交点,且,求实数的取值范围.
(本小题12分)如图,在四棱锥中,底面是正方形,侧棱,是的中点.(Ⅰ)证明;(Ⅱ)求三棱锥A-BDP的体积.