已知首项不为零的数列的前n项和为,若对任意的r、s,都有.(1)判断是否为等差数列,并证明你的结论;(2)若,数列的第n项是数列的第项,求;(3)求和.
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(),圆C的参数方程(θ为参数).(1)设P为线段MN的中点,求直线OP的平面直角坐标方程;(2)判断直线l与圆C的位置关系.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直于AB于F,连接AE,BE,证明:(1)∠FEB=∠CEB;(2)EF2=AD•BC.
已知函数.(1)若是函数,y=F(x)的极值点,求实数a的值;(2)若函数y=F(x)(x∈(0,3])的图象上任意一点处切线的斜率恒成立,求实数a的取值范围;(3)若函数y=f(x)在[1,2]上有两个零点,求实数a的取值范围.
如图所示的长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求证:D1O⊥平面AB1C;(3)求二面角B﹣AB1﹣C的大小.
某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响.已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.(1)求乙、丙两人各自回答这道题正确的概率;(2)用ξ表示回答该题正确的人数,求ξ的分布列和数学期望Eξ.