(本小题满分12分)为援助汶川灾后重建,对某项工程进行竞标,共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同。(1)企业E中标的概率是多少?(2)在中标的企业中,至少有一家来自河南省的概率是多少
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为(t为参数,0<a<),曲线C的极坐标方程为. (I)求曲线C的直角坐标方程; (II)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
如图,已知⊙O是的外接圆,是边上的高,是⊙O的直径. (1)求证:; (II)过点作⊙O的切线交的延长线于点,若,求的长.
已知函数 (I)若函数上是减函数,求实数的最小值; (2)若,使()成立,求实数的取值范围.
已知为椭圆的左,右焦点,为椭圆上的动点,且的最大值为1,最小值为-2. (I)求椭圆的方程; (II)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点。试判断的大小是否为定值,并说明理由.
如图,已知长方形中,,为的中点. 将沿折起,使得平面平面. (I)求证:; (II)若点是线段的中点,求二面角的余弦值.