(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求锐二面角的余弦值;(3)在(2)的条件下,设,求点到平面的距离。
(本小题共13分) 已知函数. (Ⅰ)若在处取得极值,求a的值; (Ⅱ)求函数在上的最大值.
(本小题共13分) 已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△,使得平面⊥平面ABD. (Ⅰ)求证:平面ABD; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)求二面角的余弦值.
(本小题共14分) 张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,. (Ⅰ)若走L1路线,求最多遇到1次红灯的概率; (Ⅱ)若走L2路线,求遇到红灯次数的数学期望; (Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
本小题共13分) 已知等差数列的前项和为,a2=4, S5=35. (Ⅰ)求数列的前项和; (Ⅱ)若数列满足,求数列的前n项和.
对于数列,若满足,则称数列为“0-1数列”.定义变换,将“0-1数列”中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如:1,0,1,则设是“0-1数列”,令. (Ⅰ) 若数列:求数列; (Ⅱ) 若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由; (Ⅲ)若为0,1,记数列中连续两项都是0的数对个数为,.求关于的表达式.