(满分12分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为。且他们是否破译出密码互不影响。若三人中只有甲破译出密码的概率为。(Ⅰ)求的值;(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。
己知椭圆的离心率为,是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为. (1)求椭圆的方程; (2)圆过两点.当圆心与原点的距离最小时,求圆的方程.
在三棱锥中,和都是边长为的等边三角形,,分别是的中点. (1)求证:平面; (2)求证:平面⊥平面; (3)求三棱锥的体积.
某车间将名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
(1)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此比较两组技工的技术水平; (2)质检部门从该车间甲、乙两组中各随机抽取名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过件,则称该车间“质量合格”,求该车间“质量合格”的概率.
在中,已知, (1)求的值; (2)若的面积为,,求的长。
(1)求证: 是等比数列,并求出的通项公式; (2),,