设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图表示.
已知函数. (1)当时,求在区间上的最大值和最小值; (2)如果函数,,,在公共定义域D上,满足,那么就称为为的“活动函数”. 已知函数,. ①若在区间上,函数是,的“活动函数”,求的取值范围; ②当时,求证:在区间上,函数,的“活动函数”有无穷多个.
一次数学考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.设计试卷时,安排前n道题使考生都能得出正确答案,安排8-n道题,每题得出正确答案的概率为,安排最后两道题,每题得出正确答案的概率为,且每题答对与否相互独立,同时规定:每题选对得5分,不选或选错得0分. (1)当n=6时, ①分别求考生10道题全答对的概率和答对8道题的概率; ②问:考生答对几道题的概率最大,并求出最大值; (2)要使考生所得分数的期望不小于40分,求n的最小值.
已知向量a=,b=,设m=a+tb(t为实数).(1)若,求当|m|取最小值时实数t的值;(2)若ab,问:是否存在实数t,使得向量a-b和向量m的夹角为,若存在,请求出t;若不存在,请说明理由.
设数列的前n项和为,且,其中p是不为零的常数.(1)证明:数列是等比数列;(2)当p=3时,若数列满足,,求数列的通项公式.
已知函数.(1)求函数的最小正周期和单调递增区间;(2)将函数的图像上各点的纵坐标保持不变,横坐标缩短到原来的,把所得到的图像再向左平移单位,得到的函数的图像,求函数在区间上的最小值.