(本小题满分12分)设数列为等差数列,且,,数列的前项和为,(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.
如图,已知四棱锥中,底面是直角梯形,是线段上不同于的任意一点,且(1)求证:;(2)求证:;(3)求三棱锥的体积。
已知函数(1)求曲线在点处的切线的方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点的坐标;(3)如果曲线的某一切与直线垂直,求切点坐标和切线方程。
如图,四棱锥P-ABCD的底面为矩形,且AB=,BC=1,E,F分别为AB,PC中点. (1)求证:EF∥平面PAD; (2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.
已知命题“方程表示焦点在轴上的椭圆”,命题“方程表示双曲线”.(1)若是真命题,求实数的取值范围; (2)若是真命题,求实数的取值范围;(3)若“”是真命题,求实数的取值范围.
已知。(1)若,求的展开式中的系数;(2)证明:。