如图,四棱锥P-ABCD的底面为矩形,且AB=,BC=1,E,F分别为AB,PC中点. (1)求证:EF∥平面PAD; (2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.
设函数 f x = sin x + cos x ( x ∈ R ) .
(1)求函数 y = f x + π 2 2 的最小正周期;
(2)求函数 y = f ( x ) f x - π 4 在 0 , π 2 上的最大值.
已知函数 f ( x ) = ( x - 1 ) e x - a x 2 + b .
(1)讨论 f ( x ) 的单调性;
(2)从下面两个条件中选一个,证明: f ( x ) 有一个零点
① 1 2 < a ≤ e 2 2 , b > 2 a ;
② 0 < a < 1 2 , b ≤ 2 a .
一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数, P ( X = i ) = p i ( i = 0 , 1 , 2 , 3 ) .
(1)已知 p 0 = 0 . 4 , p 1 = 0 . 3 , p 2 = 0 . 2 , p 3 = 0 . 1 ,求 E ( X ) ;
(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程: p 0 + p 1 x + p 2 x 2 + p 3 x 3 = x 的一个最小正实根,求证:当 E ( X ) ≤ 1 时, p = 1 ,当 E ( X ) > 1 时, p < 1 ;
(3)根据你的理解说明(2)问结论的实际含义.
已知椭圆C的方程为 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) ,右焦点为 F ( 2 , 0 ) ,且离心率为 6 3 .
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线 MN 与曲线 x 2 + y 2 = b 2 ( x > 0 ) 相切.证明:M,N,F三点共线的充要条件是 | MN | = 3 .
在四棱锥中,底面 ABCD 是正方形,若 AD = 2 , QD = QA = 5 , QC = 3 .
(1)证明:平面 QAD ⊥ 平面 ABCD ;
(2)求二面角 B - QD - A 的平面角的余弦值.