数列 a n 满足 a 1 = 0 , a 2 = 2 , a n + 2 = 1 + cos 2 n π 2 a n + 4 sin 2 n π 2 , n = 1 , 2 , 3 . . . ,
(I)求 a 3 , a 4 ,并求数列 a n 的通项公式; (II)设 S k = a 1 + a 2 + … + a 2 k - 1 , T k = a 2 + a 4 + … + a 2 k , W k = 2 S k T + T k K ∈ N + , 求使 W k > 1 的所有 k 的值,并说明理由。
设关于x的一元二次方程(1)若是从0,1,2,3四个数中任取一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率。(2)若是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
在△ABC中,角A、B、C所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求△ABC面积的最大值.
(本小题满分14分)已知函数,(1)求的定义域;(2)求的单调区间并指出其单调性;(3)求的最大值,并求取得最大值时的的值。
(本小题满分12分)某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数. (1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
本小题满分12分)已知函数,(1)利用函数单调性的定义判断函数在区间[2,6]上的单调性;(2)求函数在区间[2,6]上的最大值和最小值.