数列 a n 满足 a 1 = 0 , a 2 = 2 , a n + 2 = 1 + cos 2 n π 2 a n + 4 sin 2 n π 2 , n = 1 , 2 , 3 . . . ,
(I)求 a 3 , a 4 ,并求数列 a n 的通项公式; (II)设 S k = a 1 + a 2 + … + a 2 k - 1 , T k = a 2 + a 4 + … + a 2 k , W k = 2 S k T + T k K ∈ N + , 求使 W k > 1 的所有 k 的值,并说明理由。
(本小题满分14分)已知角,且,(I) 求的值;(II)求的值.
(本小题满分15分)(Ⅰ)如图1,是平面内的三个点,且与不重合,是平面内任意一点,若点在直线上,试证明:存在实数,使得:.(Ⅱ)如图2,设为的重心,过点且与、(或其延长线)分别交于点,若,,试探究:的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.
(本小题满分15分)已知定义在上的函数,最大值与最小值的差为4,相邻两个最低点之间距离为,且函数图象所有的对称中心都在图象的对称轴上.(I)求的表达式;(II)若,求的值;(III)设,,,若恒成立,求实数的取值范围.
(本小题满分14分)已知向量且,函数 (I)求函数的最小正周期及单调递增区间;(II)若,分别求及的值
(本小题满分14分)已知向量,.(I) 若,共线,求的值;(II)当时,求与夹角的余弦值.