已知函数 f ( x ) = sin x 2 cos x 2 + cos 2 x 2 - 2 .
(Ⅰ)将函数 f ( x ) 化简成 A sin ω x + φ + B ( A > 0 , φ > 0 , φ ∈ [ 0 , 2 π ) ) 求 f ( x ) 的周期;
(Ⅱ)求函数 f ( x ) ;在 [ π , 17 π 12 ] ] 上的最大值和最小值.
.(本小题满分14分) 已知函数。 (Ⅰ)若点(1,)在函数图象上且函数在该点处的切线斜率为,求的极 大值; (Ⅱ)若在区间[-1,2]上是单调减函数,求的最小值
(本小题满分14分) 已知四棱锥的底面是边长为4的正方形,,分别为中点。 (1)证明:。 (2)求三棱锥的体积。
(本小题满分12分) 袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是. (1)求n的值; (2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标为b. 记事件A表示“a+b=2”,求事件A的概率.
(本小题满分为12分) 已知函数. (Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.
(本小题满分12分) 已知向量,向量,函数. (Ⅰ)求的最小正周期; (Ⅱ)已知,,分别为内角,,的对边,为锐角,,且 恰是在, 上的最大值,求,和的面积.