在数列和中,,,,其中且,.(Ⅰ)若,,求数列的前项和;(Ⅱ)证明:当时,数列中的任意三项都不能构成等比数列;(Ⅲ)设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
设集合是函数的定义域,集合是函数的值域.(Ⅰ)求集合;(Ⅱ)设集合,若集合,求实数的取值范围.
已知椭圆:.(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.①证明直线与轴交点的位置与无关;②若∆面积是∆面积的5倍,求的值;(2)若圆:.是过点的两条互相垂直的直线,其中交圆于、两点,交椭圆于另一点.求面积取最大值时直线的方程.
已知数列,是其前项的和,且满足,对一切都有成立,设.(1)求;(2)求证:数列 是等比数列;(3)求使成立的最小正整数的值.
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中、是过抛物线焦点的两条弦,且其焦点,,点为轴上一点,记,其中为锐角.(1)求抛物线方程;(2)求证:.
已知向量,,其中.函数在区间上有最大值为4,设.(1)求实数的值;(2)若不等式在上恒成立,求实数的取值范围.