如图,已知抛物线与直线的两个交点分别为A、B,点P在抛物线上从A向B运动(点P不同于点A、B),(Ⅰ)求由抛物线与直线所围成的图形面积;(Ⅱ)求使⊿PAB的面积为最大时P点的坐标。
某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利元的前提下,可卖出件;若做广告宣传,广告费为千元比广告费为千元时多卖出件. (Ⅰ)试写出销售量与的函数关系式; (Ⅱ)当时,厂家应生产多少件这种产品,做几千元的广告,才能获利最大?
如图,四棱锥的底面为矩形,且,,,, (Ⅰ)平面PAD与平面PAB是否垂直?并说明理由; (Ⅱ)求直线PC与平面ABCD所成角的正弦值.
2013年4月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:
(Ⅰ)根据表中数据,求出,的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关? (Ⅱ)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少? 参考数据:
参考公式:
在中,角的对边分别为,已知:,且. (Ⅰ)若,求边; (Ⅱ)若,求的面积.
设函数,若时,有极小值, (1)求实数的取值; (2)若数列中,,求证:数列的前项和; (3)设函数,若有极值且极值为,则与是否具有确定的大小关系?证明你的结论.