某地举行篮球比赛,其中男子篮球总决赛在雄风队与豪杰队之间角逐,采用七局四胜制,若有一队胜4场,由此队获胜且结束比赛,因而队实力非常接近,在每场比赛中两队获胜是等可能的。据以往资料统计,每场比赛组织者可获门票收入5万元,两队决出胜负后,问:(1)求组织者在此次决赛中获门票收入为20万元的概率。(2)求组织者在此次决赛中获门票收入不少于30万元的概率。(1)门票收入20万无,必须比赛四场,且能决出胜负
(本小题满分12分)已知数列是等差数列,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列是首项为2,公比为2的等比数列,求数列的前项和.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,. (Ⅰ)求证:; (Ⅱ)若,求四棱锥的体积.
(本小题满分12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
(Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
【原创】(本小题满分12分)已知. (Ⅰ)求函数的最小正周期和对称中心; (Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.
(本小题满分7分)选修4—5:不等式选讲 已知函数,, 若恒成立,实数的最大值为. (Ⅰ)求实数. (Ⅱ)已知实数满足且的最大值是,求的值.