已知函数(其中A、B、是实数,且)的最小正周期是2,且当时,取得最大值2;(1)、求函数的表达式;(2)、在闭区间上是否存在的对称轴?如果存在,求出其对称轴的方程,若不存在,说明理由。
已知函数(是常数) (I) 求函数的单调区间; (II) 当在处取得极值时,若关于x的方程在上恰有两个不相等的实数根,求实数的取值范围; (III) 求证:当时.
已知数列,设 ,数列。 (1)求证:是等差数列; (2)求数列的前项和; (3)若一切正整数恒成立,求实数m的取值范围。
已知函数在x = 1处取得极值,其中a,b,c为常数。 (Ⅰ)试确定a,b的值; (II) 若对任意x>0,不等式恒成立,求c的取值范围。
四棱锥中,底面为矩形,平面底面,,,,点是侧棱的中点. (Ⅰ)求证:平面; (Ⅱ)求二面角的大小. (Ⅲ)在线段求一点,使点到平面的距离为.
等差数列的各项均为正数,,前n项和为是等比数列,且 (Ⅰ)求列数和的通项公式; (Ⅱ)求的值.