(本小题共14分)数列的前n项和为,点在直线上.(I)求证:数列是等差数列;(II)若数列满足,求数列的前n项和(III)设,求证:
用适当方法证明:如果那么。
已知函数在处有极值。(Ⅰ)求实数的值;(Ⅱ)求函数的单调区间。
一个口袋中装有大小相同的2个白球和3个黑球。(Ⅰ)从中摸出两个球,求两球恰好颜色不同的概率;(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率。
在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图所标边长,由勾股定理有。设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥,如果用,,表示三个侧面面积,表示截面面积,那么你类比得到的结论是 。
在数列中,对于任意,等式成立,其中常数.(Ⅰ)求的值;(Ⅱ)求证:数列为等比数列;(Ⅲ)如果关于n的不等式的解集为,求b和c的取值范围.