右图为一简单组合体,其底面ABCD为正方形,平面,,且="2" .(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;(2)求四棱锥B-CEPD的体积;(3)求证:平面.
已知函数(). (1)求的最小正周期; (2)求函数在区间上的取值范围.
【选修4-5:不等式选讲】 设函数(). (1)证明:; (2)若,求的取值范围.
【选修4-4:坐标系与参数方程】 已知圆的参数方程为(,为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求曲线的普通方程与曲线的直角坐标方程; (2)设为曲线上的动点,求点与曲线上点的距离的最小值,并求此时点的坐标.
【选修4-1:几何证明选讲】 如图,已知圆上的弧,过点的圆的切线与的延长线交于点. 求证:(1); (2).
(本小题满分12分) 已知函数,其中. (1)若函数在区间内单调递增,求的取值范围; (2)求函数在区间上的最小值; (3)求证:对于任意的,且时,都有成立.